Warning: mktime() expects parameter 4 to be int, string given in /home/csiorg/public_html/wp-content/plugins/ultimate-member/includes/core/class-cron.php on line 85 Bayesian Approach to Learning Temporally Extended Concepts - انجمن کامپیوتر ایران
“موقعیت یابی در شبکه های Ad Hoc با استفاده از شبکه های عصبی” به سبد خرید شما اضافه شد. مشاهده سبد خرید
مشاهده مشخصات مقاله
Bayesian Approach to Learning Temporally Extended Concepts
Saied Haidarian Shahri, Farzad Rastegar, Majid Nili Ahmadabadi
نویسنده (ها)
دوازدهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
مربوط به کنفرانس
In several previous studies it has been shown that the generalization capabilities of humans through concept
learning is reminiscent of Bayesian modeling. When discriminating concepts from one another, human subjects
tend to focus on the relevant features of the subspace and ignore the irrelevant ones. In this paper we propose a
Bayesian concept learning paradigm that utilizes unrestricted Bayesian networks to learn the required concepts
for optimal decision making. This approach has several beneficial characteristics that a concept learning
algorithm should hold. At first it can both learn form observing an expert performing the desired task and from
its own experience while carrying it out. Secondly, it is a close and computationally feasible approximation to the
Bayesian modeling capabilities of humans. Thirdly, the Markov blanket surrounding the decision variable can
render the irrelevant features independent and therefore this approach can ignore them seamlessly from the
feature subspace. The simulation and experimental results are promising and show that our approach can
successfully extract the required temporally extended concepts for a mobile robot task.
چکیده
برای اعضای سایت : ۱٠٠,٠٠٠ ریال
برای دانشجویان عضو انجمن : ۲٠,٠٠٠ ریال
برای اعضای عادی انجمن : ۴٠,٠٠٠ ریال