مشاهده مشخصات مقاله
مائده مقربی, سید رضا کامل
بیست و هفتمین کنفرانس بین الملی انجمن کامپیوتر ایران
اینترنت اشیاء به شبکهای اشاره دارد که در آن بسیاری از وسایل و اشیاء پیرامون ما به شبکه اینترنت متصل شدهاند و با همدیگر و یا با سایر اشیاء ارتباط برقرار میکنند. ارتباطات در این فناوری نوین فراتر از ارتباط انسان با انسان و ماشین با ماشین میباشد. همگام با گسترش روزافزون اینترنت اشیاء در جنبههای مختلف زندگی روزمره و فعالیتهای فردی و اجتماعی افراد، اهمیت تامین امنیت اطلاعات و حفظ حریم خصوصی کاربران بیش از پیش نمایان شده است. یکی از معضلات استفاده از چنین سیستمهایی نفوذ افراد غیرمجاز به سیستم و استفاده از اطلاعات آن یا انجام دستکاریهای غیرمجاز در آن است به همین علت تلاش برای بهبود روشها و الگوریتمهای موجود بسیار مورد توجه محققان این حوزه میباشد. در این پژوهش از شبکههای عصبی کانولوشن که یکی از روشهای قدرتمند یادگیری عمیق هستند و دارای معماری پیچیده و توانایی تشخیص ویژگیها و ارتباطات پیچیده موجود بین حملات هستند، برای ارائه یک سیستم تشخیص نفوذ با دقت تشخیص بالا و نرخ هشدار اشتباه پایین استفاده کردهایم. این روش با مجموعه داده NSL-KDD آموزش داده شد و به دقت 1/86% در جداسازی دادههای حمله و عادی دست یافت.
برای اعضای سایت : ۱٠٠,٠٠٠ ریال
برای دانشجویان عضو انجمن : ۲٠,٠٠٠ ریال
برای اعضای عادی انجمن : ۴٠,٠٠٠ ریال