مشاهده مشخصات مقاله
A. Shirvani, H. Chegini, S. Setayeshi, C. Lucas
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
Polynomials are one of the most powerful functions that have been used in many fields of mathematics such as curve fitting and regression. Low order polynomials are desired for their smoothness1, good local approximation and interpolation. Being smooth, they can be used to locally approximate almost any derivable function. This means that when linear functions fail in approximation (e.g. where the first order Taylor expansion equals zero) polynomial functions can be used in local approximation, such that one can achieve better estimations at extremums. In this paper, application of polynomial kernel functions in locally linear neurofuzzy models is shown. Using polynomial kernels in local models, better local approximations in prediction of chaotic time series such as Mackey-Glass is achieved, and the capability of the neurofuzzy network is enhanced.
برای اعضای سایت : ۱٠٠,٠٠٠ ریال
برای دانشجویان عضو انجمن : ۲٠,٠٠٠ ریال
برای اعضای عادی انجمن : ۴٠,٠٠٠ ریال