مشاهده مشخصات مقاله
M. Nosrati Maralloo, A. R. Koushki, C. Lucas, A. Kalhor
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
Long-term forecasting of load demand is necessary for the correct operation of electric utilities. There is an on-going attention toward putting new approaches to the task. Recently, Neurofuzzy modeling has played a successful role in various applications over nonlinear time series prediction. This paper presents a neurofuzzy model for long-term load forecasting. This model is identified through Locally Linear Model Tree (LoLiMoT) learning algorithm. The model is compared to a multilayer perceptron and hierarchical hybrid neural model (HHNM). The models are trained and assessed on load data extracted from a North- American electric utility.
برای اعضای سایت : ۱٠٠,٠٠٠ ریال
برای دانشجویان عضو انجمن : ۲٠,٠٠٠ ریال
برای اعضای عادی انجمن : ۴٠,٠٠٠ ریال