مشاهده مشخصات مقاله
Morteza Mohaqeqi, Reza Soltanpoor, Azadeh Shakery
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
Concept graph is a graph that represents the relationships between language concepts. In this structure the relationship between any two words is demonstrated by a weighted edge such that the value of this weight is interpreted as the degree of the relevance of two words. Having this graph, we can obtain most relevant words to a special term. In this paper, we propose a method for improving the classification of documents from unknown sources by means of concept graph. In our method, initially some features are selected from a training set by a well-known feature selection algorithm. Then, by extracting most relevant words for each class from the concept graph, a more effective feature set is produced. Our experimental results identify an improvement of 1% and 8% in precision and recall measures, respectively.
برای اعضای سایت : ۱٠٠,٠٠٠ ریال
برای دانشجویان عضو انجمن : ۲٠,٠٠٠ ریال
برای اعضای عادی انجمن : ۴٠,٠٠٠ ریال