انجمن کامپیوتر ایران

برای عضویت کلیک کنید

مشاهده‌ مشخصات مقاله

Hierarchical Bayesian Reservoir Memory

Ali Nouri, Hooman Nikmehr

نویسنده (ها)

چهاردهمین کنفرانس بین‌المللی سالانه انجمن کامپیوتر ایران

مربوط به کنفرانس

In a quest for modeling human brain, we are going to introduce a brain model based on a general framework for brain called Memory-Prediction Framework. The model is a hierarchical Bayesian structure that uses Reservoir Computing methods as the state-of-the-art and the most biological plausible Temporal Sequence Processing method for online and unsupervised learning. So, the model is called Hierarchical Bayesian Reservoir Memory (HBRM). HBRM uses a simple stochastic gradient descent learning algorithm to learn and organize common multi-scale spatio-temporal patterns/features of the input signals in a hierarchical structure in an unsupervised manner to provide robust and real-time prediction of future inputs. We suggest HBRM as a real-time high-dimensional stream processing model for the basic brain computations. In this paper we will describe the model and assess its prediction accuracy in a simulated real-world environment.

چکیده

برای اعضای سایت : ۱٠٠,٠٠٠ ریال
برای دانشجویان عضو انجمن : ۲٠,٠٠٠ ریال
برای اعضای عادی انجمن : ۴٠,٠٠٠ ریال

قیمت