مشاهده مشخصات مقاله
M. Komeili, N. Armanfard, M. Valizadeh, E. Kabir
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
In this paper we propose a new integration method for multi-feature object tracking in a particle filter framework. We divide particles into separate clusters. All particles within a cluster measure a specific feature. The number of particles within a cluster is in proportion to the reliability of associated feature. We do a compensation stage which neutralizes the effect of particles weights mean within a cluster. Compensation stage balances the concentration of particles around local maximal. So, particles are distributed more effectively in the scene. Proposed method provides both effective hypothesis generation and effective evaluation of hypothesis. Experimental results over a set of real-world sequences demonstrate better performance of our method compared to the common methods of feature integration.
برای اعضای سایت : ۱٠٠,٠٠٠ ریال
برای دانشجویان عضو انجمن : ۲٠,٠٠٠ ریال
برای اعضای عادی انجمن : ۴٠,٠٠٠ ریال