مشاهده مشخصات مقاله
Omid Khayat, Javad Razjouyan, Hadi ChahkandiNejad, Mahdi Mohammad Abadi, Mohammad Mehdi
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
This paper introduces a revisited hybrid algorithm for function approximation. In this paper, a simple and fast learning algorithm is proposed, which automates structure and parameter identification simultaneously based on input-target samples. First, without need of clustering, the initial structure of the network with the specified number of rules is established, and then a training process based on the error of other training samples is applied to obtain a more precision model. After the network structure is identified, an optimization learning, based on the criteria error, is performed to optimize the obtained parameter set of the premise parts and the consequent parts. At the end, comprehensive comparisons are made with other approaches to demonstrate that the proposed algorithm is superior in term of compact structure, convergence speed, memory usage and learning efficiency.
برای اعضای سایت : ۱٠٠,٠٠٠ ریال
برای دانشجویان عضو انجمن : ۲٠,٠٠٠ ریال
برای اعضای عادی انجمن : ۴٠,٠٠٠ ریال