عنوان مقاله | نویسنده(ها) | مربوط به کنفرانس | چکیده | خرید مقاله |
---|---|---|---|---|
Soodeh Aghli Moghaddam, Siamak Mohammadi, Parviz Jabedar Maralani
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
Asynchronous protocols exhibit various noise robustness
and when used in GALS NoC links, they can directly affect the
signal integrity. In this paper we study the noise robustness of
two well-known asynchronous protocols, namely Dual-Rail
(DRP) and Bundled-Data (BDP) in the GALS NoC links, and
subsequently confirm our claims through simulations. We
apply an enhanced version of BDP and DRP to 32/64 parallel
line links, show results in terms of noise robustness using
global interconnect features, specified in the ITRS roadmap
for 32nm technology.
The simulation results for two thousand random generated
inputs show that the number and the amplitude of noise
glitches over ‘0’ state lines as well as the required threshold
voltage needed for avoiding errors in BDP link are much
lower than in DRP's. Therefore, BDP links can present better
signal integrity features and have less overhead compared to
DRP's, employing only some simple noise reduction
techniques and more timing adjustment effort.
|
||
Hadis Mohseni, Shohreh Kasaei
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
Discriminative subspace analysis is a popular approach
for a variety of applications. There is a growing
interest in subspace learning techniques for face
recognition. Principal component analysis (PCA) and
eigenfaces are two important subspace analysis methods
have been widely applied in a variety of areas.
However, the excessive dimension of data space often
causes the curse of dimensionality dilemma, expensive
computational cost, and sometimes the singularity
problem. In this paper, a new supervised discriminative
subspace analysis is presented by encoding face
image as a high order general tensor. As face space
can be considered as a nonlinear submanifold embedded
in the tensor space, a decomposition method called
Tucker tensor is used which can effectively decomposes
this sparse space. The performance of the proposed
method is compared with that of eigenface, Fisherface,
tensor LPP, and ORO4×2 on ORL and Weizermann
databases. Conducted experimental results show the
superiority of the proposed method.
|
||
Bahareh Atoufi, Ali Zakerolhosseini, Caro Lucas
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
Being able to predict the coming seizure can
impressively improve the quality of the patients' lives
since they can be warned to avoid doing risky activities
via a prediction system. Here, a locally linear neuro
fuzzy model is used to predict the EEG time series.
Subsequently, this model is utilized in accompany with
Singular Spectrum Analysis for prediction. Afterward,
an information theoretic criterion is used to select a
reliable subset of input variables which contain more
information about the target signal. Comparison of
three mentioned methods on one hand shows that SSA
enables our prediction model to extract the main
patterns of the EEG signal and highly improves the
prediction accuracy. On the other hand, applying the
method of channel selection to the model yields more
accurate prediction. It is shown that fusion of some
certain signals provides more information about the
target and considerably improves the prediction
ability.
|
||
Monireh Abdoos, Nasser Mozayani, Ahmad Akbari
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
In this paper, we present a new measure for
evaluating similarity changes in a multi agent system.
The similarity measure of the agents changes during
the learning process. The similarity differences are
because of any composition or decomposition of some
agent sets. The presented measure, defines the changes
of homogeneity of agents by composition and
decomposition. The utility of the metrics is
demonstrated in the experimental evaluation of multi
agent foraging. The results show that while the
similarity difference gets a positive value, the
performance grow rapidly.
|
||
Mohamad Hasan Bahari, Asad Azemi, Naser Pariz, Said Khorashadi Zadeh, Seyed Mohsen Davarpanah
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
In this paper, a new fuzzy fading memory (FFM) is
developed in order to aid a modified input estimation
(MIE) technique and enhance its performance in
tracking high maneuvering targets. The MIE has been
introduced recently and performs well in tracking low
and medium maneuvering targets. However, due to
some modeling errors, the accuracy of this tracker may
be seriously degraded in presence of high maneuvers.
To cope with this difficulty, an intelligent approach
based on FFM is presented in this paper. Simulation
results prove the efficiency of the proposed method in
tracking high maneuvering targets.
|
||
Jinzan Lai, Nematollaah Shiri
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
Uncertainty reasoning has been identified as an
important and challenging issue in the database research.
Many logic frameworks have been proposed to represent
and reason about uncertainty in deductive databases. On
the basis of the way in which uncertainties are associated
with the facts and rules in programs, the approaches of
these frameworks have been classified into “annotation
based (AB)” and “implication based (IB).” When extending
both frameworks with certainty constraints, they become
equivalent in terms of expressive power. In this paper, we
propose a uniform environment to evaluate and experiment
with logic programs in AB and IB frameworks at the same
time. We also extend the existing query processing to handle
certainty constraints and we carry out experiments to
evaluate its performance. Our experiments and results
indicate that the proposed techniques yield tools that are
capable to reason with uncertainty.
|
||
سعید سعادتی, علیرضا عصاره, بیتا شادگار
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
فرایین آئینی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
رضا سوخت سرایی, حسین دلداری
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
مهدی بکرانی, مجتبی لطفیزاد
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
سیدمحمد ابوالحسنی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
مهدی حاجیزاده, کامران کاظمی, محمدصادق هلفروش
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
روحالله جوادپور, فریدون شمس
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
فاطمه امینزاده, علیرضا عصاره, بیتا شادگار
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
علیرضا بساقزاده, ندا داداشی سرج, وحید حقیقت دوست
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
محمود سلطانی, هشام فیلی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
سلیمه جوادیان, محمد مهدی جوانمرد
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
امیررضا طاهری, جلال خدابندهلو, محمد مصطفوی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
محسن تورانی, سیدعلیاصغر بهشتی شیرازی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
امین نوجوان
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|