انجمن کامپیوتر ایران

برای عضویت کلیک کنید

آرشیو مقالات

عنوان مقاله نویسنده(ها) مربوط به کنفرانس چکیده خرید مقاله
بابک بهبودی فر, راهبه نیارکی اصلی
بیست و چهارمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
با کاهش روز‌افزون ابعاد تکنولوژي و نيز ولتاژ‌هاي تغذيه مشکلاتي نظير افزايش نرخ خطاي نرم و جريان‌هاي نشتي پيش مي‌آيند که کارايي مدار‌هاي ديجيتال مبتني بر تکنولوژي CMOS را به طرز چشمگيري کاهش مي‌دهند. در سال‌هاي اخير تکنولوژي FinFET براي حل مشکل جريان‌هاي نشتي خصوصا در ابعاد زير 25 نانومتر پيشنهاد شده است. در اين مقاله به بررسي و مقايسه ساختار‌هاي لچ مقاوم در تکنولوژي‌هاي CMOS و FinFET پرداخته شده است. ساختار‌هاي لچ درتکنولوژي FinFET اگرچه از لحاظ پارامتر‌هاي عملکردي مانند توان و تاخير وضعيت به مراتب بهتري نسبت به تکنولوژي CMOS دارند اما تکنولوژي CMOS از لحاظ مقاومت در برابر خطاي نرم عملکرد بهتري را از خود نشان مي‌دهد. لذا در اين مقاله راهکاري براي بهبود کيفيت مقاومت ساختار‌هاي لچ از طريق مهندسي افزاره در تکنولوژي FinFET ارائه شده است. در اين روش با افزايش ظرفيت خازن‌ها مقاومت گره‌هاي حساس مدار در برابر خطاي نرم افزايش مي‌يابد. نتايج شبيه‌سازي‌ها نشان مي‌دهد ساختار‌هاي بهينه هم‌چنان برتري خود را از نظر پارامتر‌هاي عملکردي نسبت به ساختار‌هاي مشابه در تکنولوژي CMOS حفظ مي‌کنند.
محسن عشقان ملک, ولی درهمی
بیست و چهارمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
در اين تحقيق يک سيستم هوشمند خبره فازي جديد به منظور صدور يا عدم صدور مجوز بارگيري جهت ارسال محصول به شرکت‌هاي درخواست کننده بار طراحي شده است. در ساخت اين سيستم فازي از سيستم فازي سوگنو با 7 پارامتر ورودي و 46 قاعده فازي بهره گرفته شده است. قواعد سيستم با استفاده از دانش خبره بدست آمده است. پارامترهاي ورودي از جامعيت کاملي در حوزه‌ي عوامل مؤثر داخلي و خارجي برخوردار بوده و بر اين اساس قدرت تعميم پذيري سيستم ارائه شده در اين تحقيق را جهت استفاده در سيستم‌هاي بارگيري مشابه افزايش داده است. با توجه به استفاده از تقسيم بندي درختي تمام فضاي ورودي توسط قواعد استخراج شده پوشش داده شده است. کارايي سيستم به وسيله‌ي آزمايش‌هايي با جامعه آماري بالا از داده‌هاي واقعي سنجيده شده و نمايانگر توانايي بالاي سيستم در تشخيص صحيح خروجي است.
وحید معراجی, هادی سلیمانی
بیست و چهارمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
حملات Access-Driven، گروهی از حملات مبتنی بر حافظه‌ی نهان محسوب می‌شوند که به واسطه‌ی توانایی مهاجم در پاک‌کردن و یا فراخوانی اطلاعات حافظه‌ی نهان، نسبت به دیگر حملات مبتنی بر این ابزار، از نمونه‌های اندازه‌گیری کم‌تری جهت استخراج مقادیر حساس کلید استفاده می‌نمایند. پیش‌نیاز اجرای فراخوانی و یا پاک‌کردن اطلاعات حافظه‌ی نهان در این دسته از حملات، آگاهی مهاجم از آفست‌های آدرس این اطلاعات در کتابخانه‌های مربوط به سیستم رمز‌نگاری می‌باشد. یکی از راهکارهای مقابله، جهت جلوگیری از نتیجه‌بخش بودن این دسته از حملات، جلوگیری از دسترسی مهاجم به آفست‌های مذکور است. این مقاله، جهت پاسخ به چالش مذکور، برای اولین بار اقدام به بررسی و پیاده‌سازی یک حمله‌ی Access-Driven جدید بر روی پردازنده‌ی اینتل مجری سیستم رمز‌نگاری AES ، بدون استفاده از آفست‌ آدرس‌های اطلاعات درون حافظه‌ی نهان می‌نماید.
صالح راد, فریدون شمس علیئی
بیست و چهارمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
به منظور ارزيابي حوزه‌هاي گوناگون فناوري اطلاعات و علوم کامپيوتر مدل‌هاي بلوغ متنوعي توسعه داده شده است. ارزيابي سطح بلوغ فرآيندها، معماري سازماني، توسعه نرم‌افزار، مديريت پروژه‌هاي فناوري اطلاعات، يکپارچه‌سازي اهداف و رويه‌ها، مهندسي سيستم، تعامل‌پذيري و امنيت اطلاعات از جمله حوزه‌هاي کاربردي مدل‌هاي بلوغ هستند. همچنين رشد پروژه‌هاي معماري سازماني و پياده‌سازي چارچوب‌هاي معماري سازماني بر اساس لايه‌هاي راهبرد، کسب و کار، داده و اطلاعات، برنامه‌هاي کاربردي و زيرساخت سازمان و همچنين محصولات و فرآورده‌هاي معماري که عموما بر پايه همين لايه‌ها توليد مي‌شوند، فرصتي براي ساير مدل‌هاي حوزه فناوري اطلاعات فراهم مي‌آورد تا با همراستايي با معماري سازماني مزيت رقابتي بيشتري را براي ذينفعان به وجود آورند. در اين تحقيق، با هدف کاهش پيچيدگي و افزايش قابليت رديابي داده‌هاي ارزيابي مدل‌هاي بلوغ، با استفاده از راهکارهايي که معماري سازماني فراهم مي‌آورد، روشي مبتني بر نگاشت اقدامات مدل بلوغ به لايه‌هاي معماري سازماني ارائه شده است. در اين روش به منظور افزايش قابليت رديابي داده‌هاي ارزيابي، با تغيير معماري (ساختار و ارتباط بين عناصر) و تغيير در زمينه ارزيابي مدل بلوغ، اقدامات از معماري اوليه به معماري مبتني بر لايه‌هاي معماري سازماني نگاشت شده‌اند. ارزيابي کيفي مدل با استفاده از يک پرسشنامه استاندارد که براي توسعه مدل‌هاي بلوغ مورد استفاده قرار مي‌گيرد انجام شده است. نتايج پرشسنامه نشان دهنده دستيابي به اهداف توسعه مدل بلوغ، با ميانگين کمّي 3.91 و توصيف کيفي «مطلوب» بوده است. پايايي پرسشنامه با استفاده از آلفاي کرونباخ در SPSS-16 عدد 0.85 محاسبه شده است. همچنين، بهبود شاخص قابليت رديابي داده‌هاي ارزيابي، با استفاده از مطالعه موردي (مدل بلوغ قابليت امنيت اطلاعات حوزه نفت و گاز ONG-C2M2) نشان داده شده است.
محمدباقر دولتشاهی, حجت نورمحمدی
بیست و چهارمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
برخلاف مجموعه داده‌هاي با ناظر تک برچسبه که در آنها به هر نمونه يک برچسب کلاس تخصيص داده مي‌شود، در مجموعه داده‌هاي چند برچسبه به هر نمونه چندين برچسب کلاس منتسب مي‌شود که همين امر، کار ساخت يک مدل دقيق و جامع از روي اين مجموعه داده‌ها را با چالش مواجه مي کند. بنابراين، استفاده از روش‌هاي تک‌برچسبه براي کار بر‌روي مجموعه داده‌هاي چند‌برچسبه منجر به نتايج قابل قبولي نخواهد شد. امروزه انتخاب ويژگي در مجموعه داده‌هاي چندبرچسبه به يکي از موضوعات چالش برانگيز در پژوهش‌هاي مرتبط با داده‌کاوي و يادگيري ماشين تبديل شده است. مجموعه داده‌هاي چندبرچسبه در حوزه‌هاي مختلفي مانند بيوانفورماتيک، گروه‌بندي متن، پردازش تصوير و غيره استفاده مي‌شوند. در اين مقاله، يک الگوريتم ممتيک براي انتخاب ويژگي در مجموعه داده‌هاي چندبرچسبه ارائه شده است. نوآوري اصلي اين مقاله، ارائه يک الگوريتم جستجوي محلي جديد است که در ترکيب با الگوريتم ژنتيک، چارچوب اصلي الگوريتم ممتيک پيشنهادي را تشکيل مي‌دهد. ايده اصلي الگوريتم جستجوي محلي پيشنهادي، ساخت تعدادي همسايه براي يک راه‌حل با استفاده از بردار دانش پيشين و بردار دانش پسين جهت انتخاب ويژگي‌هاي موثر و حذف ويژگي‌هاي غيرمفيد است. نتايج پياده‌سازي الگوريتم پيشنهادي و مقايسه اين نتايج با کارهاي مشابه، نشان دهنده اين موضوع است که روش پيشنهادي در اکثر موارد منجر به توليد نتايج بهتري مي‌گردد.
مهدی قربعلی پور, امیدرضا معروضی
بیست و چهارمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
در اين مقاله براي اولين بار يک الگوريتم توزيع شده براي يافتن کوتاه‌ترين مسيرهاي تک مبدأ تصادفي ارائه شده است. اين الگوريتم که مبتني بر آتاماتاي يادگير است مي‌تواند کوتاه‌ترين مسيرها از يک مبدأ به ساير گره‌ها را در يک گراف تصادفي بيابد. گراف تصادفي، گرافي است که در آن هزينه منتسب به لينک‌ها، متغيرهاي تصادفي با توزيع از پيش ناشناخته مي‌باشد. کوتاه‌ترين مسير بين دو گره مسيري با کمترين طول مورد انتظار تعريف مي‌شود. در الگوريتم پيشنهادي ابتدا هر گره مجهز به يک آتاماتون يادگير مي‌شود و سپس يک الگوريتم محلي در هر گره به صورت تکراري در فواصل ثابت زماني تا همگرا شدن آتاماتون يادگير اجرا مي‌شود. در هر تکرار الگوريتم محلي، آتاماتون يادگير فعال شده و لينکي که بايد از آن نمونه‌گيري شود را مشخص مي‌کند. اين روش نمونه‌گيري منجر به کاهش نمونه‌گيري‌هاي زائد و در نتيجه موجب سرعت اجراي الگوريتم مي‌شود. نتايج آزمايشي حاکي از برتري الگوريتم پيشنهادي از نظر سرعت و دقت نسبت به الگوريتم‌هاي ارائه شده قبلي (که غير توزيع شده‌اند) مي‌باشد. به دليل توزيع شدگي الگوريتم، قابليت پياده سازي آن در شبکه‌هاي واقعي امکان پذير است.
مهدی آسیابی خوش طلب, ابراهیم خلیل عباسی
بیست و پنجمین کنفرانس بین‌المللی انجمن کامپیوتر ایران
قطعه کدهای تکراری به هنگام برنامه‌نویسی به صورت خواسته یا ناخواسته ایجاد می‌شوند. وجود کدهای تکراری باعث افزایش هزینه‌های نگهداری، افزایش زمان توسعه و افزایش زمان تصحیح خطاهای کد می‌شود. پیش از این روش¬های مختلفی مانند نشانه-گذاری، گراف وابستگی، درخت نحو انتزاعی برای تشخیص کدهای تکراری پیشنهاد شده است. هدف در این مقاله ارزیابی میزان دقت تشخیص کدهای تکراری با استفاده از الگوریتم‌های یادگیری ماشین است. در مرحله اول، میزان دقت الگوریتم‌های مختلف یادگیری ماشین در تشخیص کدهای تکراری محاسبه شد. در مرحله بعد، الگوریتم جنگل تصادفی اجرا و دقت آن محاسبه گردید. پیش از اجرای الگوریتم¬ها استانداردسازی اولیه مجموعه داده انجام گرفت و همچنین ویژگی¬های کد منبع با استفاده از TF-IDF استخراج گردید. نتایج ارزیابی نشان داد که الگوریتم جنگل تصادفی دارای دقت بیشتری نسبت به سایر الگوریتم‌های یادگیری ماشین اجرا شده در این مقاله است.
مهشید اعتمادی طلب, منصور اسماعیل‌پور, حمید یاسینیان
بیست و پنجمین کنفرانس بین‌المللی انجمن کامپیوتر ایران
در دهه‌های اخیر، پیشرفتهای علم پزشکی و افزایش سطح عمومی بهداشت و سطح آگاهی جامعه، موجب کاهش مرگ و میرهای ناشی از بیماریها شده است. اما با وجود پیشرفتهای چشمگیر صورت گرفته در سالهای اخیر در حوزه پزشکی، همچنان نرخ مرگ و میر افراد، در اثر بیماریها، بسیار بیشتر از مرگ و میر افراد در اثر حوادث و بلایای طبیعی است. در این پژوهش با بکارگیری الگوریتم فراابتکاری موفق به کشف الگوهای پرتکرار در بیماری سرطان شدیم. از ویژگیهای روش پیشنهادی این است که این روش میتواند در زمان کمتری نسبت به روشهای کلاسیک، الگوهای پرتکرار را کشف نموده و قابلیت بکارگیری در محیط‌های پویا را نیز داشته باشد. پس از استخراج الگوهای پرتکرار از داده های پزشکی یک سیستم جدید جهت دسته بندی بیماران و پیش بینی بیماری ارائه شد. روش پیشنهادی با روش ارائه شده در سالهای اخیر مورد مقایسه و ارزیابی قرار گرفت. نتایج نشان می‌دهد که روش پیشنهادی از دقت و عملکرد بهتری برای استخراج قوانین مکرر و دسته بندی بیماران برخوردار است.
ندا ازوجی, اشکان سامی, محمد طاهری
بیست و پنجمین کنفرانس بین‌المللی انجمن کامپیوتر ایران
در سال‌های اخیر، طبقه‌بندی‌های تکه‌ای-خطی به دلیل سادگی و قابلیت بالای طبقه‌بندی برای توسعه مدل‌های خطی به غیرخطی، توجه زیادی را جلب کرده‌اند. در اين مقاله، طبقه‌بندی پهن‌حاشیه‌ی چندبرچسبه‌ای به نام Cell-SVM ارائه می‌شود که با ساختار سلولی و ایجاد مرزهای تصمیم‌گیری تکه‌ای-خطی قادر به حل مسائل پیچیده‌ی طبقه‌بندی غیرخطی است. برخلاف روش‌های متداول طبقه‌بندی‌های SVM، طبقه‌بندی Cell-SVM از چند ابرصفحه به جای یک ابرصفحه در فضای جستجو بهره می‌برد و با ساختار سلولی ایجاد شده، راهکاری برای برخی چالش‌های مهم در حوزه‌ی یادگیری ماشین مانند داده‌های چند برچسبه، برچسب‌های چندبخشی،تعداد کم نمونه‌ها و طبقه‌بندی غیرخطی ارائه می‌دهد. نتایج آزمایش‌ها بر روی مجموعه داده‌های واقعی مخرن شناخته شده‌ی UCI نشان می‌دهد به طورکلی، طبقه‌بندی پیشنهادی Cell-SVM دقت بالاتری نسبت به روش‌های متداول چندبرچسبه‌ی SVM غیرخطی با کرنل RBF دارد که دقت به دست آمده بر روی چندین مجموعه داده به‌طور چشمگیری بهبود داشته است. همچنین نتایج قابل مقایسه‌ای با سایر روش‌های شناخته شده‌ی طبقه‌بندی مانند شبکه‌های عصبی و درخت تصمیم‌گیری به‌دست آمده که در مجموع Cell-SVM عملکرد مناسبی داشته است.
محسن محمدی‌نژاد, فریدون شمس علیئی
سومین همایش ملی پیشرفت‌های معماری سازمانی
با ظهور تهدیدها و حملات سایبری جدید و پیشرفته، امنیت اطلاعات یکی از مهمترین چالش‌های سازمان‌ها شده است. نگرانی از خطراتی که دارایی‌ها و اطلاعات با ارزش سازمان‌ها را تهدید می‌کند، هر روز بیشتر می‌شود. در این راستا سامانه‌های مختلف امنیتی از استراتژی‌ها و راه حل‌های متفاوتی، جهت حل دغدغه‌های حوزه امنیت، استفاده می‌کنند. یکی از رویکردهای مهم در این زمینه، استفاده از سیستم‌های جامع آگاهی وضعیتی سایبری است. یکی از حوزه‌هایی که می‌تواند کمک شایانی به بحث آگاهی وضعیتی بکند حوزه فرآیندکاوی است. فرآیندکاوی، تکنیکی برای استخراج دانش فرآیندی از رویدادهای ثبت ‌شده توسط یک سیستم اطلاعاتی است. در این تحقیق، ضمن بررسی سیستم‌های آگاهی وضعیتی سایبری به کاربرد فرآیندکاوی در تشخیص حملات سایبری، پرداخته شده است. هدف اصلی این مطالعه، بررسی کاربرد فرآیندکاوی در سیستم‌های آگاهی وضعیتی سایبری و ارائه رویکردی در این زمینه است، که در بخش‌های بعدی به آن پرداخته شده است. بررسی تحقیقات انجام شده نشان می‌دهد، استفاده از فرآیندکاوی می‌تواند، تاثیر زیادی در پیشرفت سیستم‌های آگاهی وضعیتی داشته باشد.
سید محمد سینا میرعبدالباقی, بهار فراهانی
سومین همایش ملی پیشرفت‌های معماری سازمانی
امروزه با توجه به تعداد زیاد شرکت‌های رقیب در حوزه‌های مختلف صنعت و خدمات، و رقابتی شدن هر چه بیشتر کسب‌وکارها، ریزش مشتریان از یک فراهم‌کننده خدمت یا محصول به فراهم کننده دیگر تبدیل به دغدغه جدی برای صاحبان کسب‌وکار شده است. با توجه به اینکه مشتریان در معرض انبوه تبلیغات و پیشنهادات جذاب از سوی کسب و کارهای رقیب هستند، می‌توان با توجه به رفتار و ویژگی‌های مصرف کننده قبل از وقوع ریزش به شناسایی مشتریانی که احتمال ریزش بالایی دارند پرداخت و با ایجاد کمپین‌های تبلیغاتی مختلف و ارائه دادن پیشنهاداتی آن‌ها را حفظ نمود. در بازاریابی همه بر این امر توافق دارند که حفظ یک مشتری از جذب یک مشتری جدید بسیار کم هزینه‌تر است. از این رو این مقاله به معرفی فازهای مختلف رویکرد پیش‌بینی مشتری ریزشی پرداخته است. در ادامه روش‌های گذشته به کار گرفته شده برای پیش‌بینی در سازمان‌های مختلف با یکدیگر مقایسه شده و ویژگی‌های هر یک مطرح گردیده است.
فاطمه خوشه‌گیر, صادق سلیمانی
بیست و ششمین کنفرانس بین‌المللی انجمن کامپیوتر ایران
ارتقای کیفیت فرآیندهای آموزشی برخط به ویژه به دلیل فراگیری آن در شرایط کنونی شیوع بیماری کرونا، از اهمیت ویژه برخوردار است. اکنون رایج‌ترین بهبودها در آموزش تحت وب، از طریق کشف الگوهای نهفته در فرآیند انتخاب دروس و انتخاب منابع درسی، با استفاده از روش‌های داده‌کاوی انجام می‌پذیرد. این در حالی است که الگوریتم‌های تحلیل شبکه مانند پیشگویی پیوند نیز می‌توانند برای این مهم به کار گرفته شوند. در این مقاله ابتدا داده‌های بایگانی از دو مجموعه داده آموزشی Moodle و OULAD ، پیش‌پردازش و به شبکه دوبخشی، تبدیل شد، سپس الگوریتم‌های رایج پایه پیشگویی پیوند مبتنی بر مجاورت (ضریب جاکارد، همسایگان مشترک، آدامیک/آدار و تقدم الحاقی) برای آن شبکه‌ها پیاده‌سازی گردید و به وسیله دو معیار دقت و مساحت زیر منحنی، مورد ارزیابی قرار گرفت. آزمایشات نشان میدهد که الگوریتم تقدم الحاقی در پیش‌بینی اخذ درس و ضریب جاکارد در اخذ منبع درسی، بهترین عملکرد را داشتند. این تفاوت در نتایج، به دلیل متفاوت بودن ویژگی‌های شبکه‌های مورد بررسی است. زمینه‌های متعدد خوش‌آتیه‌ای در این رابطه برای کارهای آتی وجود دارد.
ملیحه دانش, مرتضی درّی‌گیو, فرزین یغمایی
بیست و ششمین کنفرانس بین‌المللی انجمن کامپیوتر ایران
با افزایش روزافزون داده‌های گرافی، عدم قطعیت موجود در این داده‌ها بنا به دلایلی همچون خطا در روش‌های اندازه‌گیری و منابع اطلاعاتی مبهم امری انکارناپذیر است که این امر منجر به ظهور گراف‌های غیرقطعی شده است. خوشه‌بندی یکی از مهم‌‌ترین عملیات کاوش گراف‌های غیرقطعی است که هدف آن گروه‌بندی گره‌های مشابه در خوشه‌هایی با اتصالات داخلی متراکم است. ما در این مقاله قصد داریم رویکرد جدیدی را در خوشه‌بندی گراف‌های غیرقطعی بر اساس یادگیری عمیق ارائه کنیم. بدین منظور ابتدا ماتریس همبستگی احتمالی گراف را بر اساس ترکیبی از اطلاعات مجاورت مرتبه اول و دوم گره‌ها به دست می‌آوریم. سپس از خودرمزگذار عمیق جهت تعبیه‌سازی گراف بر روی ماتریس همبستگی حاصل بهره می‌بریم، طوریکه ضمن حفظ اطلاعات ساختاری گراف در فضای برداری با ابعاد کم، بازنمایی گره‌ها در راستای دستیابی به خوشه‌بندی بهینه‌ای از آنها باشند. در انتها بردارهای تعبیه گره‌ها را با استفاده از الگوریتم‌های خوشه‌بندی گراف‌های قطعی پارتیشن‌بندی می‌کنیم. روش پیشنهادی با استفاده از چهار مجموعه داده واقعی از شبکه تعاملی پروتئین‌ها شامل Krogan_core، Krogan_extend، Collins و Gavin و طبق معیارهایPrecision ، Specificity و Accuracy مورد ارزیابی قرار گرفت. مطابق نتایج حاصل، روش پیشنهادی حدود ۱۸ درصد کارایی بیشتری نسبت به الگوریتم‌های اخیر خوشه‌بندی گراف‌های غیرقطعی داشته است.
سمانه امامی
بیست و ششمین کنفرانس بین‌المللی انجمن کامپیوتر ایران
امروزه با افزایش پیچیدگی سیستم‌های دیجیتال، استفاده از سنتز سطح بالا در طراحی و پیاده‌سازي‌هاي سخت‌افزارهای مختلف به یک ضرورت تبدیل شده است. به علاوه، به دلیل بالا بودن هزینه‌های ساخت مدارهای دیجیتال، تمایل به استفاده از سخت‌افزارهای قابل بازپیکربندی افزایش یافته است. اما برای حفظ سرعت و کارایی، ریزدانگی در طراحی این سخت‌افزارها به تدریج افزایش یافته، به طوریکه در حال حاضر سخت‌افزارهای قابل بازپیکربندی درشت‌دانه در کاربرهای مختلف از جايگاه ویژه‌ای برخوردار هستند. از سوی دیگر، استفاده از کاربردهای حسابی و به ویژه حساب دهدهی در زندگی روزمره بشر بسیار رایج است و به همین دلیل، بهینگی این مدارها و کارایی آن‌ها بسیار حائز اهمیت می‌باشد. این مقاله به اراﺋﻪ یک الگوریتم مکاشفه‌ای مبتنی بر قوانین برای مرحله مقیدسازی و نگاشت در سنتز سطح بالای مدارهای دهدهی ورودی بر روي یک ﻣﻌﻤﺎري ﻗﺎﺑﻞ ﺑﺎزﭘﯿﮑﺮﺑﻨﺪي درﺷﺖداﻧﻪ در این کاربرد می‌پردازد.
علی بشیری, علی صفری, مهدی رضاییان
بیست و ششمین کنفرانس بین‌المللی انجمن کامپیوتر ایران
امروزه پردازش تصویر به‌ واسطه گستره وسیعی از کاربرد‌های آن در زمینه‌های مختلف مانند کاربردهای نظامی، پزشکی، تجاری و کشاورزی نقش حیاتی در دنیا ایفا می‌کند. در چند سال اخیر مطالعات بسیاری در زمینه تشخیص و طبقه‌بندی خودکار گیاهان صورت گرفته است. در این مقاله یک روش کاربردی مبتنی بر الگوریتم بهینه‌سازی وال (WOA) به‌منظور شناسایی برگ و طبقه‌بندی انواع گیاهان ارائه شده است. در این روش مجموعه‌ای از ویژگی‌های کارآمد در فضاهای رنگی مختلف استخراج می‌شود. این ویژگی‌ها پس از نرمال‌سازی و کاهش بعد به‌وسیله الگوریتم بهینه‌سازی وال به‌عنوان ورودی به یک طبقه بند داده می‌شوند. طبقه‌بندهای مختلفی از جمله ماشین بردار پشتیبان، k نزدیک‌ترین همسایه، درخت تصمیم، Logistic Regression و MLP مورد آزمایش قرار گرفتند. روش معرفی‌ شده بر روی سه پایگاه داده Swedish Leaf،Flavia و مجموعه داده جمع‌آوری‌شده در این پژوهش ارزیابی می‌شود. در نهایت با استفاده از طبقه بند Logistic Regression توانستیم به بهترین دقت یعنی ۷۰/۹۹% بر روی مجموعه داده Swedish leaf و دقت ۶۳/%۹۷ بر روی مجموعه داده Flavia برسیم. نتایج تجربی نشان می‌دهد که روش پیشنهادی ما یک روش کارآمد برای طبقه‌بندی برگ گیاهان است که می‌تواند در حوزه‌های دیگر پردازش تصویر نیز مفید واقع شود.
حسین علی یولداشی, محمد نصرت‌زاده, محمد ربیعی
بیست و هفتمین کنفرانس بین الملی انجمن کامپیوتر ایران
در این مقاله روشی برای شناسایی علائم راهنمایی‌ و رانندگی با استفاده از شبکه‌های عصبی و الگوریتم YOLO نسخه 3 پیشنهاد شده است. بنا به تحقیقات انجام شده، اکثر تصادفات رانندگی، از بی‌توجهی به این علائم ناشی می‌‌شود، بنابراین به‌کارگیری سیستم شناسایی علائم راهنمایی‌ و رانندگی به‌عنوان یک سیستم دستیار راننده می‌‌تواند آمار تصادفات را کاهش دهد. الگوریتم و دیتاست پیشنهادی قادر است در زمانی که با شدت و ضعف نور مواجه هستیم به‌درستی پاسخگو باشد. نوآوری این طرح را می‌‌توان توانایی تشخیص در شرایطی که نور، وضعیت دوربین، شرایط آب‌وهوا و کیفیت دوربین مناسب نیست مطرح نمود. با استفاده از دیتاست GTSDB و انجام تکنیک‌های داده‌افزایی بر روی همین دیتا‌ست به‌منظور تقویت داده‌ها و افزایش دقت شناسایی علائم راهنمایی‌ و رانندگی استفاده گردید. در این روش ابتدا کلیه داده‌های دیتا‌ست دریافت می‌‌گردد و جهت بهبود روند سرعت شناسایی و دقت بالاتر از داده‌افزایی استفاده گردید، و به‌منظور دقت بالاتر سایز تصاویر 416×416 در نظر گرفته شد و در نهایت، پس از آماده‌سازی وزن‌های YOLO با برنامه پایتون تست گردید. در مجموع، دقت روش پیشنهادی به 99.70 درصد رسید، وزن‌های آماده شده نسبت به دیتا‌ست GTSDB از دقت و سرعت تشخیص بالاتری، در زمان‌های مختلف روز، موقعیت و فاصله‌های متفاوت برخوردار است.
توحید رزمجو کورعباسلو, مهرداد کارگری, عبدالله عشقی, سامیه خسروی
بیست و هفتمین کنفرانس بین الملی انجمن کامپیوتر ایران
با افزایش تراکنش‌های بانکی، که عمدتاً تراکنش‌های کارتی هستند و در بیشتر موارد از طریق کانال‌های اینترنتی انجام می‌شوند، تراکنش‌های ناهنجار و سوءاستفاده نیز افزایش یافته است. از آنجا که الگوی رفتاری تراکنشی هر شخص در طول زمان به دلایل مختلف دچار تغییرات می‌شود، مسأله‌ای به نام رانش مفهوم شکل می‌گیرید که سبب کاهش دقت الگوریتم‌های یادگیری ماشین که برای کشف ناهنجاری به کار گرفته می‌شوند خواهد شد. استفاده از مشخصه‌های آماری رفتاری مشتریان در الگوریتم‌های هوشمند قادر به حل مشکل رانش مفهوم و ارتقای دقت الگوریتم‌ها نیست از اینرو طول عمر مفید الگوریتم‌های هوشمندی که برای کشف ناهنجاری رفتاری ایجاد می‌شوند بسیار کوتاه خواهد بود. برای حل این مشکل و بهبود شناسایی ناهنجاری‌ها و مدیریت رانش مفهوم، در این تحقیق از مدلی بر اساس پنجره کشویی در 6 الگوریتم یادگیری ماشین بانظارت استفاده و کارایی و دقت آنها با هم مقایسه شده است. مجموعه داده استفاده شده در این مقاله مربوط به تراکنش‌های مشتریان یکی از بانک‌های ایران در یک دوره 7 ماهه است. طبق نتایج به دست آمده بعد از اجرای مدل، در کشف ناهنجاری‌های کارت‌ها بهبود ایجاد شده است و الگوریتم جنگل تصادفی بیشترین دقت، F1_Score و AUC_Score را نسبت به سایر الگوریتم‌ها نشان داده است.
ستاره احصایی, محسن راجی, بهنام قوامی
بیست و هفتمین کنفرانس بین الملی انجمن کامپیوتر ایران
افزایش اندازه مدل و تعداد پارامترها در شبکه‏‌های عصبی عمیق، از یک سو موجب پیشرفت‏‌های زیادی در عملکرد این شبکه‌‏ها شده و از سوی دیگر باعث بروز چالش‌هایی از قبیل افزایش اندازه حافظه می‌گردد. در هرس مدل، با حذف برخی پارامترهای شبکه، ضمن حفظ دقت مدل، اندازه آن کاهش داده می‏شود. با به‏کارگیری این شبکه‏‌ها در سیستم‌های حساس-از-منظر-ایمنی، تاثیر هرس مدل که به طور سنتی با هدف کاهش اندازه شبکه استفاده می‏‌شود، بر تحمل‌‏پذیری اشکال شبکه‏‌ها مورد سوال جدی قرار گرفته است. در این مقاله، به کمک آزمایش‏‌های گسترده تزریق اشکال، تحلیل جامعی بر میزان تاثیر روش‏‌های مختلف هرس بر تحمل‌‏پذیری اشکال شبکه‌‏های عصبی عمیق ارائه می‌‏شود. مدل اشکال مورد مطالعه، خطاهای نرم واژگونی بیتی است که در حافظه ذخیره‌‏ساز وزن‏‌های شبکه رخ می‏‌دهد و باعث تغییر مقدار وزن‏‌های شبکه می‏‌گردد. باتوجه به نتایج به‌دست‌آمده از آزمایش‏‌های متنوع تزریق اشکال بر روی شبکه AlexNet که به روش‏‌های مختلف هرس شده است، می‏توان نتیجه گرفت که به طور کلی، هرس کردن مدل باعث بهبود تحمل‌‏پذیری اشکال می‏‌شود و می‏‌توان از آن به منظور بهبود تحمل‏‌پذیری شبکه‏‌های عصبی عمیق هم بهره گرفت. از میان روش‏‌های مختلف هرس مدل، هرس وزنی بیشترین میزان بهبود تحمل‌‏پذیری اشکال را دارد.
سید محمد عمادی, مجید زیارت بان
بیست و هشتمین کنفرانس بین المللی انجمن کامپیوتر ایران
تبدیل تصویر به تصویر با هدف تبدیل یک تصویر از دامنه مبدأ به دامنه مقصد بدون دسترسی به مجموعه داده آموزشیِ جفت شده یکی از چالش‌های این زمینه است. در این میان CycleGAN به نحو موفقیت آمیزی توانست با معماری خاص خود و استفاده از مفهوم Cycle Loss، از توانمندی شبکه‌های مولد تخاصمی در این کاربرد استفاده کند. در این مقاله با تغییراتی در معماری اصلی CycleGAN که با اضافه شدن دو تفکیک کننده در خروجی بخش Resnet مولدها انجام می شود، عملکرد مولدها بهبود داده شود. نتایج کمّی بر اساس سه معیار ارزیابی و همچنین مقایسه بصری نتایج نشان دهنده بهبود عملکرد معماری پیشنهادی نسبت به معماری اصلی شبکه CycleGAN است.
زهرا هاشمی, مریم امیری
بیست و هشتمین کنفرانس بین المللی انجمن کامپیوتر ایران
خوشه‌بندی یکی از مهم‌ترین مباحث در زمینه‌ی داده کاوی است. هدف از خوشه‌بندی تفکیک داده‌ها است به گونه‌ای که داده‌های موجود در یک خوشه بیشترین شباهت را به یکدیگر و کمترین شباهت را با اعضای خوشه‌های دیگر داشته باشند. یکی از مهم‌ترین الگوریتم‌های خوشه‌بندی الگورریتم K-means می‌باشد. در این الگوریتم ابتدا به تعداد خوشه‌ها به صورت تصادفی از داده‌های اصلی مراکز خوشه اولیه انتخاب می‌شوند و سپس عملیات یافتن خوشه‌ها اجرا می‌شود. چالش اصلی در K-means انتخاب مراکز خوشه‌ها به‌صورت بهینه است. در گذشته پژوهش‌های متعددی در زمینه انتخاب مراکز اولیه خوشه‌ها در الگوریتم K-means صورت گرفته است. در این مقاله برای نخستین بار روش جدیدی برای انتخاب مراکز خوشه‌ها مبتنی بر الگوکاوی ارائه می‌شود. در این روش ابتدا برای کاهش حجم داده‌ها، انتخاب ویژگی روی داده‌ها اعمال می‌شود؛ سپس الگوهای پرتکرار استخراج و بر پایه‌ی این الگوها مراکز اولیه خوشه‌ها مشخص می‌شود. روش پیشنهادی با روش پایه K-means و با روش جدید BDD بر روی ۵ مجموعه داده با ابعاد گوناگون ارزیابی می‌شود. نتایج به دست آمده نشان می‌دهد در اغلب موارد، روش پیشنهادی عملکرد بهتری دارد.
1 140 141 142 143