عنوان مقاله | نویسنده(ها) | مربوط به کنفرانس | چکیده | خرید مقاله |
---|---|---|---|---|
Bahareh J. Farahani, Mahmood Fathy
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
In this paper we proposed a new approach for
improving distribution and coverage of mobile sensors
in a target filed. The goal is to deploy sensors such that
a target area is optimally covered by them. Proposed
method works based on number of neighbors. The
nodes which have the minimum overlaps with its
neighbors start to move away according to summation
of forces from their neighbors, boundaries and
obstacles. In order to achieve optimum coverage, the
effect of field corners is also calculated. For
evaluating the effectiveness of our proposed algorithm,
we compared the performance of our algorithm with
TRI and VEC which are well known algorithms in field
of mobile sensors coverage. Simulation results show
that our algorithm surely surpasses TRI and VEC in
coverage.
|
||
A. H. Momeni Azandaryani, M. R. Meybodi
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
In this paper we propose an artificial immune
system in which learning automata are used to
adaptively determine the values of its parameters.
Learning automata are used for altering the shape of
receptor portion of antibodies to better
complementarily match the confronted antigen. In
order to show the effectiveness of the proposed
artificial immune computer experiments have been
conducted. The result of experimentations confirms the
effectiveness of the proposed model.
|
||
Parastoo Didari, Behrad Babai, Azadeh Shakery
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
Text retrieval engines, such as search engines,
always return a list of documents in response to a given
query. Existing evaluations of text retrieval algorithms
mostly use Precision and Recall of the returned list of
documents as main quality measures of a search engine. In
this paper, we propose a novel approach for comparing
different algorithms adopted by different search engines
and evaluate their performance. In our approach, the
results of each algorithm is treated as an inter-related set of
documents and the effectiveness of the algorithm is
evaluated based on the degree of relation in the set of
documents. After verifying the correctness of the evaluation
measure by examining the results of the two retrieval
algorithms, BM25 and pivoted normalization, and
comparing these results with an ideal ranking, we compare
the results of these algorithms and investigate the impact of
certain major factors like stemming on the results of the
suggested algorithm. The effectiveness of our proposed
method is justified through obtained experimental results.
|
||
Mohamad Alishahi, Mehdi Ravakhah, Baharak Shakeriaski, Mahmud Naghibzade
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
One of the most effective ways to extract knowledge
from large information resources is applying data
mining methods. Since the amount of information on
the Internet is exploding, using XML documents is
common as they have many advantages. Knowledge
extraction from XML documents is a way to provide
more utilizable results. XCLS is one of the most
efficient algorithms for XML documents clustering. In
this paper we represent a new algorithm for clustering
XML documents. This algorithm is an improvement
over XCLS algorithm which tries to obviate its
problems. We implemented both algorithms and
evaluated their clustering quality and running time on
the same data sets. In both cases, it is shown that the
performance of the new algorithm is better.
|
||
Ali Nouri, Hooman Nikmehr
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
In a quest for modeling human brain, we are going to introduce a brain model based on a general framework for brain called Memory-Prediction Framework. The model is a hierarchical Bayesian structure that uses Reservoir Computing methods as the state-of-the-art and the most biological plausible Temporal Sequence Processing method for online and unsupervised learning. So, the model is called Hierarchical Bayesian Reservoir Memory (HBRM). HBRM uses a simple stochastic gradient descent learning algorithm to learn and organize common multi-scale spatio-temporal patterns/features of the input signals in a hierarchical structure in an unsupervised manner to provide robust and real-time prediction of future inputs. We suggest HBRM as a real-time high-dimensional stream processing model for the basic brain computations. In this paper we will describe the model and assess its prediction accuracy in a simulated real-world environment.
|
||
Mohammad Ali Keyvanrad, Mohammad Mehdi Homayounpour
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
Gender identification based on speech signal has
become gradually a matter of concern in recent years.
In this context 6 feature types including MFCC, LPC,
RC, LAR, pitch values and formants are compared for
automatic gender identification and three best feature
types are selected using four feature selection
techniques. These techniques are GMM, Decision
Tree, Fisher’s Discriminant Ratio, and Volume of
Overlap Region. A dimension reduction is done on the
best three feature types and the best coefficients are
then selected from each feature vector. Selected
coefficients are evaluated for gender classification
using three types of classifiers including GMM, SVM
and MLP neural network. 96.09% gender
identification performance was obtained as the best
performance using the selected coefficients and MLP
classifier.
|
||
حامد امینزاده, محمد هادی زاهدی, عباس بابایی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
طاهره برومندنژاد, محمد عبداللهی ازگمی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
سجاد یزدانی شهربابکی, حسین نظامآبادیپور
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
سمانه غنی, مرتضی موسوی, علی موقر رحیمآبادی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
حمید لطیفی, مجید لطیفی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
سعید نصری, علیرضا بهراد, مریم وفادار
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
امیر باوفای طوسی, سیدمحمد سادات حسینی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
محسن رضاییان, مجید غیوری, مصطفی حقجو
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
سعید سلطانعلی, نستوه طاهری جوان, آرش نصیری اقبالی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
اسماعیل نورانی, محمد عبدالهی ازگمی, امیر امیدی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
غلامحسین اکباتانیفرد, محمدحسین یغمایی مقدم, رضا منصفی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
مصطفی میلانی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
سمیرا جلالوندی, غلامرضا لطیف شبگاهی, آتنا سلیمانی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
مجتبی جهانبخش, احمد اکبری
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|