عنوان مقاله | نویسنده(ها) | مربوط به کنفرانس | چکیده | خرید مقاله |
---|---|---|---|---|
مهدي جعفري زاده, سياوش خرسندي
|
چهاردهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
متناسب با کاربرده اي مختلف ، پروتکلهاي گوناگوني بر اي
کنترل دسترسي به کانال در شبکهه اي حسگر ز يرآب ي طراح ي شده
است. ولي تا بحال ي ک پروتکل خوشه اي مناسب بر اي کاربرده اي
مانيتورينگ بلادرنگ توسعه نيافته است. يکي از معمار ي پروتکل ه اي کارا براي کاربردهاي مذکور در شبکههاي خشکي LEACH است . در اين مقاله خواهيم ديد که به کار بردن پروتکل LEACH اصلي در زير آب به دليل مشکلات محيطي اعم از تأخير انتشار و واريانس اين تأخير،
متداول بودن خرابي گرهها و خطاي بيت بالا در ارتباطات صو تي عملاً
شبکه را از فعاليت بازميدارد. ولي ميتوان با اعمال تغ ييرات ي شامل
گستردهتر کردن مراحل فاز پيکربندي و ارسال بستة کنترل ي از سو ي
سرخوشه براي گرههاي سالم، کارايي اين پروتکل را از منظر بهره وري
استفاده از پهناي باند تا ۶۰ % بازي ابي کرد و پيوست گي اطلاعات را در
بيشتر از % ۹۹ زمان تضمين کرد.
|
||
F. Abdoli, M. Kahani
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
Abstract—In this paper we discussed about utilizing
methods and techniques of semantic web in the Intrusion
Detection Systems. To extract semantic relations between
computer attacks and intrusions in a Distributed Intrusion
Detection System, we use ontology. Protégé software is our
selected software for building ontology. In addition, we
utilized Jena framework to make interaction between
MasterAgent and attacks ontology. Our Distributed
Intrusion Detection System is a network which contains
some IDSagents and a special MasterAgent. MasterAgent
contains our proposed attacks ontology. Every time a
IDSagent detects an attack or new suspected condition, it
sends detection’s report for MasterAgent. Therefore, it can
extract the semantic relationship among computer attacks
and suspected situations in the network with proposed
ontology. Finally, the experience shows that the pruposed
system reduced the rate of false positive and false negative.
|
||
Sussan Sanati, Mohammad Hossein Yaghmaee, Asghar Beheshti
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
Wireless sensor networks are limited in energy.
Any routing protocol used in wireless sensor networks
should take into consideration the time sensitive nature of
the traffic in such networks, along with the amount of
energy left for each sensor.
In this paper we present an energy aware packet delivery
mechanism for probabilistic Quality of Service (QoS)
guarantee in wireless sensor networks. Each node takes
routing decisions based on geographic progress towards the
destination sink, required end-to-end total reaching
probability, delay at the candidate forwarding node and
residual energy. The simulation results demonstrate that the
proposed protocol effectively improves the energy usage
efficiency of the sensor nodes, maximizing the lifetime of the
entire sensor network, while keeping guaranteed QoS.
|
||
A. Banitalebi, S. K. Setarehdan, G. A. Hossein-Zadeh
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
A user of Brain Computer Interface (BCI) system
must be able to control external computer devices with
brain activity. Although the proof-of-concept was
given decades ago, the reliable translation of user
intent into device control commands is still a major
challenge. There are problems associated with
classification of different BCI tasks. In this paper we
propose the use of chaotic indices of the BCI. We use
largest Lyapunov exponent, mutual information,
correlation dimension and minimum embedding
dimension as the features for the classification of EEG
signals which have been released by BCI Competition
IV. A multi-layer Perceptron classifier and a KMSVM(
support vector machine classifier based on kmeans
clustering) is used for classification process,
which lead us to an accuracy of 95.5%, for
discrimination between two motor imagery tasks.
|
||
M. Komeili, N. Armanfard, M. Valizadeh, E. Kabir
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
In this paper we propose a new integration method for
multi-feature object tracking in a particle filter
framework. We divide particles into separate clusters.
All particles within a cluster measure a specific
feature. The number of particles within a cluster is in
proportion to the reliability of associated feature. We
do a compensation stage which neutralizes the effect of
particles weights mean within a cluster. Compensation
stage balances the concentration of particles around
local maximal. So, particles are distributed more
effectively in the scene. Proposed method provides
both effective hypothesis generation and effective
evaluation of hypothesis. Experimental results over a
set of real-world sequences demonstrate better
performance of our method compared to the common
methods of feature integration.
|
||
Omid Khayat, Javad Razjouyan, Hadi ChahkandiNejad, Mahdi Mohammad Abadi, Mohammad Mehdi
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
This paper introduces a revisited hybrid algorithm for
function approximation. In this paper, a simple and fast
learning algorithm is proposed, which automates
structure and parameter identification simultaneously
based on input-target samples. First, without need of
clustering, the initial structure of the network with the
specified number of rules is established, and then a
training process based on the error of other training
samples is applied to obtain a more precision model.
After the network structure is identified, an optimization
learning, based on the criteria error, is performed to
optimize the obtained parameter set of the premise parts
and the consequent parts. At the end, comprehensive
comparisons are made with other approaches to
demonstrate that the proposed algorithm is superior in
term of compact structure, convergence speed, memory
usage and learning efficiency.
|
||
A. Mehdi, R. R. Ggholam-ali
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
This paper estimates and segments the moving objects
based on center of mass model to decrease the search window
and to provide a new algorithm, which achieves an accurate
and rapid tracking.
Furthermore, a novel method is proposed to update the
template size adaptively by using estimation and segmentation
of moving objects. The estimated results of moving target is
transformed to wavelet domain and target tracking is
performed in that domain. To improve the algorithm center of
mass model is performed in wavelet domain. By using kalman
predictor and thresholding method, a new approach is
presented for object tracking failure and recovery.
|
||
Rezvan Kianifar, Farzad Towhidkhah
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
Human can determine optimal behaviors which
depend on the ability to make planned and adaptive
decisions. In this paper, we have proposed a predictive
structure based on neuropsychological evidences to
model human decision making process by
concentrating on the role of frontal brain regions
which are responsible for predictive control of human
behavior. We have considered a model-based
reinforcement learning framework to implement the
relations between these brain areas. Finally, we have
designed an experimental test to compare the function
of model with human behavior in a maze task. Our
results reveal that there is more than reward and
punishment in human behavior, and considering
higher cognitive functions such as prediction will help
to have more reliable models which could better
describe human behavior.
|
||
زهرا افصحی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
مهدی اکرمی, محمدرضا رزازی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
محمد طاهر پیلهور, هشام فیلی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
نستوه طاهری جوان, آرش نصیری اقبالی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
فهیمه فتاحپور, خشایار یغمایی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
مریم سنقرزاده, راهبه نیارکی اصل
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
حوا علیزاده نوقابی, فرزانه غیور باغبانی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
سیدمحمد بیدکی, محمد هادی صدرالدینی, منصور ذوالقدری, نادعلی محمودی کهن
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
جواد محبی نجمآباد, هادی آدینه, حسین دلداری
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
اباذر برزگر, مصطفی جهانگیر, محمد حسن بیات
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
مسعود بشیری, سعید شیری قیداری
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
محمد حسینزاده مقدم, علیرضا باقری, علی صفری ممقانی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|