انجمن کامپیوتر ایران

برای عضویت کلیک کنید

آرشیو مقالات

عنوان مقاله نویسنده(ها) مربوط به کنفرانس چکیده خرید مقاله
Hadis Mohseni, Shohreh Kasaei
چهاردهمین کنفرانس بین‌المللی سالانه انجمن کامپیوتر ایران
Discriminative subspace analysis is a popular approach for a variety of applications. There is a growing interest in subspace learning techniques for face recognition. Principal component analysis (PCA) and eigenfaces are two important subspace analysis methods have been widely applied in a variety of areas. However, the excessive dimension of data space often causes the curse of dimensionality dilemma, expensive computational cost, and sometimes the singularity problem. In this paper, a new supervised discriminative subspace analysis is presented by encoding face image as a high order general tensor. As face space can be considered as a nonlinear submanifold embedded in the tensor space, a decomposition method called Tucker tensor is used which can effectively decomposes this sparse space. The performance of the proposed method is compared with that of eigenface, Fisherface, tensor LPP, and ORO4×2 on ORL and Weizermann databases. Conducted experimental results show the superiority of the proposed method.
Bahareh Atoufi, Ali Zakerolhosseini, Caro Lucas
چهاردهمین کنفرانس بین‌المللی سالانه انجمن کامپیوتر ایران
Being able to predict the coming seizure can impressively improve the quality of the patients' lives since they can be warned to avoid doing risky activities via a prediction system. Here, a locally linear neuro fuzzy model is used to predict the EEG time series. Subsequently, this model is utilized in accompany with Singular Spectrum Analysis for prediction. Afterward, an information theoretic criterion is used to select a reliable subset of input variables which contain more information about the target signal. Comparison of three mentioned methods on one hand shows that SSA enables our prediction model to extract the main patterns of the EEG signal and highly improves the prediction accuracy. On the other hand, applying the method of channel selection to the model yields more accurate prediction. It is shown that fusion of some certain signals provides more information about the target and considerably improves the prediction ability.
A. Mashhadi Kashtiban, M. Alinia Ahandani
چهاردهمین کنفرانس بین‌المللی سالانه انجمن کامپیوتر ایران
In this paper we propose several methods for partitioning, the process of grouping members of population to different memeplexes, in a shuffled frog leaping algorithm. These proposed methods divide the population in terms of the value of cost function or the geometric position of members or quite random partitioning. The proposed methods are evaluated on several low and high dimensional benchmark functions. The obtained results on low dimensional functions demonstrate that geometric partitioning methods have the best success rate and the fastest performance. Also on high dimensional functions, however using of the geometric partitioning methods for the partitioning stage of the SFL algorithm lead to a better success rate but these methods are more time consuming than other partitioning methods.
Hossein Ghaffarian, Hamid Parvin, Behrouz Minaei
چهاردهمین کنفرانس بین‌المللی سالانه انجمن کامپیوتر ایران
In this paper, we proposed a new feature subset selection approach. In proposed approach first, the entire dataset are classified and the best number of clusters over it are found according to silhouette value. Then according to this value, each feature is alone classified with the same cluster number and accordingly the proposed entropy fuzzy measure is found for them. We examine our method on some traditional datasets. The results show a good performance of proposed method.
Jinzan Lai, Nematollaah Shiri
چهاردهمین کنفرانس بین‌المللی سالانه انجمن کامپیوتر ایران
Uncertainty reasoning has been identified as an important and challenging issue in the database research. Many logic frameworks have been proposed to represent and reason about uncertainty in deductive databases. On the basis of the way in which uncertainties are associated with the facts and rules in programs, the approaches of these frameworks have been classified into “annotation based (AB)” and “implication based (IB).” When extending both frameworks with certainty constraints, they become equivalent in terms of expressive power. In this paper, we propose a uniform environment to evaluate and experiment with logic programs in AB and IB frameworks at the same time. We also extend the existing query processing to handle certainty constraints and we carry out experiments to evaluate its performance. Our experiments and results indicate that the proposed techniques yield tools that are capable to reason with uncertainty.
سعید سعادتی, علیرضا عصاره, بیتا شادگار
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
فرایین آئینی
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
رضا سوخت سرایی, حسین دلداری
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
مهدی بکرانی, مجتبی لطفی‌زاد
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
سیدمحمد ابوالحسنی
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
مهدی حاجی‌زاده, کامران کاظمی, محمدصادق هل‌فروش
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
روح‌الله جوادپور, فریدون شمس
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
فاطمه امین‌زاده, علیرضا عصاره, بیتا شادگار
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
علی‌رضا بساق‌زاده, ندا داداشی سرج, وحید حقیقت دوست
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
محمود سلطانی, هشام فیلی
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
سلیمه جوادیان, محمد مهدی جوانمرد
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
امیررضا طاهری, جلال خدابنده‌لو, محمد مصطفوی
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
محسن تورانی, سیدعلی‌اصغر بهشتی شیرازی
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
امین نوجوان
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
حمید خردادی آستانه, مهرگان مهدوی, محمد حسن خوب‌کار
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
1 123 124 125 126 127 128 129 143