عنوان مقاله | نویسنده(ها) | مربوط به کنفرانس | چکیده | خرید مقاله |
---|---|---|---|---|
Hadis Mohseni, Shohreh Kasaei
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
Discriminative subspace analysis is a popular approach
for a variety of applications. There is a growing
interest in subspace learning techniques for face
recognition. Principal component analysis (PCA) and
eigenfaces are two important subspace analysis methods
have been widely applied in a variety of areas.
However, the excessive dimension of data space often
causes the curse of dimensionality dilemma, expensive
computational cost, and sometimes the singularity
problem. In this paper, a new supervised discriminative
subspace analysis is presented by encoding face
image as a high order general tensor. As face space
can be considered as a nonlinear submanifold embedded
in the tensor space, a decomposition method called
Tucker tensor is used which can effectively decomposes
this sparse space. The performance of the proposed
method is compared with that of eigenface, Fisherface,
tensor LPP, and ORO4×2 on ORL and Weizermann
databases. Conducted experimental results show the
superiority of the proposed method.
|
||
Bahareh Atoufi, Ali Zakerolhosseini, Caro Lucas
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
Being able to predict the coming seizure can
impressively improve the quality of the patients' lives
since they can be warned to avoid doing risky activities
via a prediction system. Here, a locally linear neuro
fuzzy model is used to predict the EEG time series.
Subsequently, this model is utilized in accompany with
Singular Spectrum Analysis for prediction. Afterward,
an information theoretic criterion is used to select a
reliable subset of input variables which contain more
information about the target signal. Comparison of
three mentioned methods on one hand shows that SSA
enables our prediction model to extract the main
patterns of the EEG signal and highly improves the
prediction accuracy. On the other hand, applying the
method of channel selection to the model yields more
accurate prediction. It is shown that fusion of some
certain signals provides more information about the
target and considerably improves the prediction
ability.
|
||
A. Mashhadi Kashtiban, M. Alinia Ahandani
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
In this paper we propose several methods for
partitioning, the process of grouping members of
population to different memeplexes, in a shuffled frog
leaping algorithm. These proposed methods divide the
population in terms of the value of cost function or the
geometric position of members or quite random
partitioning. The proposed methods are evaluated on
several low and high dimensional benchmark
functions. The obtained results on low dimensional
functions demonstrate that geometric partitioning
methods have the best success rate and the fastest
performance. Also on high dimensional functions,
however using of the geometric partitioning methods
for the partitioning stage of the SFL algorithm lead to
a better success rate but these methods are more time
consuming than other partitioning methods.
|
||
Hossein Ghaffarian, Hamid Parvin, Behrouz Minaei
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
In this paper, we proposed a new feature subset
selection approach. In proposed approach first, the
entire dataset are classified and the best number of
clusters over it are found according to silhouette value.
Then according to this value, each feature is alone
classified with the same cluster number and
accordingly the proposed entropy fuzzy measure is
found for them. We examine our method on some
traditional datasets. The results show a good
performance of proposed method.
|
||
Jinzan Lai, Nematollaah Shiri
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
Uncertainty reasoning has been identified as an
important and challenging issue in the database research.
Many logic frameworks have been proposed to represent
and reason about uncertainty in deductive databases. On
the basis of the way in which uncertainties are associated
with the facts and rules in programs, the approaches of
these frameworks have been classified into “annotation
based (AB)” and “implication based (IB).” When extending
both frameworks with certainty constraints, they become
equivalent in terms of expressive power. In this paper, we
propose a uniform environment to evaluate and experiment
with logic programs in AB and IB frameworks at the same
time. We also extend the existing query processing to handle
certainty constraints and we carry out experiments to
evaluate its performance. Our experiments and results
indicate that the proposed techniques yield tools that are
capable to reason with uncertainty.
|
||
سعید سعادتی, علیرضا عصاره, بیتا شادگار
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
فرایین آئینی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
رضا سوخت سرایی, حسین دلداری
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
مهدی بکرانی, مجتبی لطفیزاد
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
سیدمحمد ابوالحسنی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
مهدی حاجیزاده, کامران کاظمی, محمدصادق هلفروش
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
روحالله جوادپور, فریدون شمس
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
فاطمه امینزاده, علیرضا عصاره, بیتا شادگار
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
علیرضا بساقزاده, ندا داداشی سرج, وحید حقیقت دوست
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
محمود سلطانی, هشام فیلی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
سلیمه جوادیان, محمد مهدی جوانمرد
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
امیررضا طاهری, جلال خدابندهلو, محمد مصطفوی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
محسن تورانی, سیدعلیاصغر بهشتی شیرازی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
امین نوجوان
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
حمید خردادی آستانه, مهرگان مهدوی, محمد حسن خوبکار
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|