عنوان مقاله | نویسنده(ها) | مربوط به کنفرانس | چکیده | خرید مقاله |
---|---|---|---|---|
Hamid Fadishei, Hamid Saadatfar, Hossein Deldari
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
The power of grid technology in aggregating
autonomous resources owned by several organizations
into a single virtual system has made it popular in
compute-intensive and data-intensive applications.
Complex and dynamic nature of grid makes failure of
users’ jobs fairly probable. Furthermore, traditional
methods for job failure recovery have proven costly
and thus a need to shift toward proactive and
predictive management strategies is necessary in such
systems. In this paper, an innovative effort is made to
predict the futurity of jobs submitted to a production
grid environment (AuverGrid). By analyzing grid
workload traces and extracting patterns describing
common failure characteristics, the success or failure
status of jobs during 6 months of AuverGrid activity
was predicted with around 96% accuracy. The quality
of services on grid can be improved by integrating the
result of this work into management services like
scheduling and monitoring.
|
||
Saeid Parsa, Kambiz Fakhr
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
The discovery of suitable web services for a given
task is one of the major operations in SOA architecture, and
researches are being done to automate this step. For the
large amount of available Web services that can be expected
in real-world settings, the computational costs of automated
discovery based on semantic matchmaking become
important.
To make a discovery engine a reliable software component,
we must aim at minimizing both the mean and the variance
of the duration of the discovery task. For this, we present an
extension for discovery engines in SWS environments that
exploit structural knowledge and previous discovery results
for reducing the search space of consequent discovery
operations. Our prototype implementation shows significant
improvements when applied to the Stanford SWS Challenge
scenario and dataset.
|
||
Muharram Mansoorizadeh, Nasrollah Moghaddam Charkari
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
A hybrid feature and decision level information fusion
architecture is proposed for human emotion recognition
from facial expression and speech prosody. An active buffer
stores the most recent information extracted from face and
speech. This buffer allows fusion of asynchronous information
through keeping track of individual modality updates.
The contents of the buffer will be fused at feature level; if
their respective update times are close to each other. Based
on the classifiers’ reliability, a decision level fusion block
combines results of the unimodal speech and face based
systems and the feature level fusion based classifier. Experimental
results on a database of 12 people show that the
proposed fusion architecture performs better than unimodal
classification, pure feature level fusion and decision level
fusion.
|
||
M. Komeili, N. Armanfard, M. Valizadeh, E. Kabir
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
In this paper we propose a new integration method for
multi-feature object tracking in a particle filter
framework. We divide particles into separate clusters.
All particles within a cluster measure a specific
feature. The number of particles within a cluster is in
proportion to the reliability of associated feature. We
do a compensation stage which neutralizes the effect of
particles weights mean within a cluster. Compensation
stage balances the concentration of particles around
local maximal. So, particles are distributed more
effectively in the scene. Proposed method provides
both effective hypothesis generation and effective
evaluation of hypothesis. Experimental results over a
set of real-world sequences demonstrate better
performance of our method compared to the common
methods of feature integration.
|
||
Omid Khayat, Javad Razjouyan, Hadi ChahkandiNejad, Mahdi Mohammad Abadi, Mohammad Mehdi
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
This paper introduces a revisited hybrid algorithm for
function approximation. In this paper, a simple and fast
learning algorithm is proposed, which automates
structure and parameter identification simultaneously
based on input-target samples. First, without need of
clustering, the initial structure of the network with the
specified number of rules is established, and then a
training process based on the error of other training
samples is applied to obtain a more precision model.
After the network structure is identified, an optimization
learning, based on the criteria error, is performed to
optimize the obtained parameter set of the premise parts
and the consequent parts. At the end, comprehensive
comparisons are made with other approaches to
demonstrate that the proposed algorithm is superior in
term of compact structure, convergence speed, memory
usage and learning efficiency.
|
||
A. Mehdi, R. R. Ggholam-ali
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
This paper estimates and segments the moving objects
based on center of mass model to decrease the search window
and to provide a new algorithm, which achieves an accurate
and rapid tracking.
Furthermore, a novel method is proposed to update the
template size adaptively by using estimation and segmentation
of moving objects. The estimated results of moving target is
transformed to wavelet domain and target tracking is
performed in that domain. To improve the algorithm center of
mass model is performed in wavelet domain. By using kalman
predictor and thresholding method, a new approach is
presented for object tracking failure and recovery.
|
||
Hassan Haghighi, Seyyed Hassan Mirian-Hosseinabadi
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
In this paper, we introduce a refinement approach
to develop probabilistic programs formally. To
achieve this goal, we first present a way to specify
probabilistic programs in a Z-based notation. We then
use an existing method of translating Z into a
refinement calculus to transform our Z-style
specifications of probabilistic programs into
specification statements of the refinement calculus.
We finally add new laws to the refinement calculus
helping us to refine the resulting specification
statements into probabilistic choice constructs of a
probabilistic imperative language. In this way, we will
provide a completely formal way for developing
probabilistic programs.
|
||
مهدی مرادیان, محمدکاظم سپهریفر
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
فاطمه حورعلی, محمدحسین صداقی, منصوره حورعلی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
مهشید هلالیمقدم, مهدی نصیری, بهروز مینایی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
نستوه طاهری جوان, آرش نصیری اقبالی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
رضوان محمودیه
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
سمانه قدرتنما, سیدمحمدرضا موسوی, محمد طاهری, منصور ذوالقدری جهرمی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
جعفر شیخزاده, محمدباقر مرادی قشلاق, سیاوش خرسندی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
مجید سهیلی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
هادی پورنادر, محمد فیروزمند
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
لیلا اخویزادگان, مصطفی حقجو
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
علیرضا یوسفزاده, محمد تشنهلب
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
زاهد رحمتی, علیرضا زارعی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
محمد علی باقری
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|