عنوان مقاله | نویسنده(ها) | مربوط به کنفرانس | چکیده | خرید مقاله |
---|---|---|---|---|
Fatemeh Daneshfar, Fardin Akhlaghian, Fathollah Mansoori
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
The traffic congestion problem in urban areas is
worsening since traditional traffic signal control systems
cannot provide efficient traffic control. Therefore, dynamic
traffic signal control in Intelligent Transportation System
(ITS) recently has received increasing attention. This study
devised an adaptive and cooperative multi-agent fuzzy system
for a decentralized traffic signal control. To achieve this goal
we have worked on a model, which has three levels of control.
Every intersection is controlled by its own traffic situation, its
neighboring intersections recommendations and a knowledge
base, which provides the traffic pattern of each intersection in
any particular day of the week and hour of the day. The
proposed architecture comprises a knowledge base, prediction
module and a traffic observer that provide data to real traffic
data preparation module, then a decision-making layer takes
decision to how long should the intersection green light be
extended. The proposed architecture can achieve dynamic
traffic signal control. We have also developed a NetLogobased
traffic simulator to serve as the agents’ world. Our
approach is tested with traffic control of a large connected
junction and the result obtained is promising; The average
delay time can be reduced by 21.76% compared to the
conventional fixed sequence traffic signal and 14.77%
compared to the vehicle actuated traffic signal control
strategy.
|
||
A. R. Koushki, M. Nosrati Maralloo, C. Lucas, A. Kalhor
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
One of the important requirements for operational
planning of electrical utilities is the prediction of
hourly load up to several days, known as Short Term
Load Forecasting (STLF). Considering the effect of its
accuracy on system security and also economical
aspects, there is an on-going attention toward putting
new approaches to the task. Recently, Neuro Fuzzy
modeling has played a successful role in various
applications over nonlinear time series prediction.
This paper presents a neuro-fuzzy model for the
application of short-term load forecasting. This model
is identified through Locally Liner Model Tree
(LoLiMoT) learning algorithm. The model is compared
to a multilayer perceptron and Kohonen Classification
and Intervention Analysis. The models are trained and
assessed on load data extracted from EUNITE network
competition.
|
||
Mohammad Zeiaee, Mohammad Reza Jahed-Motlagh
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
Portfolio optimization under classic mean-variance
framework of Markowitz must be revised as variance
fails to be a good risk measure. This is especially true
when the asset returns are not normal. In this paper,
we utilize Value at Risk (VaR) as the risk measure and
Historical Simulation (HS) is used to obtain an
acceptable estimate of the VaR. Also, a well known
multi-objective evolutionary approach is used to
address the inherent bi-objective problem; In fact,
NSGA-II is incorporated here. This method is tested on
a set of past return data of 12 assets on Tehran Stock
Exchange (TSE). A comparison of the obtained results,
shows that the proposed method offers high quality
solutions and a wide range of risk return trade-offs.
|
||
Ali Nouri, Hooman Nikmehr
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
In a quest for modeling human brain, we are going to introduce a brain model based on a general framework for brain called Memory-Prediction Framework. The model is a hierarchical Bayesian structure that uses Reservoir Computing methods as the state-of-the-art and the most biological plausible Temporal Sequence Processing method for online and unsupervised learning. So, the model is called Hierarchical Bayesian Reservoir Memory (HBRM). HBRM uses a simple stochastic gradient descent learning algorithm to learn and organize common multi-scale spatio-temporal patterns/features of the input signals in a hierarchical structure in an unsupervised manner to provide robust and real-time prediction of future inputs. We suggest HBRM as a real-time high-dimensional stream processing model for the basic brain computations. In this paper we will describe the model and assess its prediction accuracy in a simulated real-world environment.
|
||
Mohammad Ali Keyvanrad, Mohammad Mehdi Homayounpour
|
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران
|
Gender identification based on speech signal has
become gradually a matter of concern in recent years.
In this context 6 feature types including MFCC, LPC,
RC, LAR, pitch values and formants are compared for
automatic gender identification and three best feature
types are selected using four feature selection
techniques. These techniques are GMM, Decision
Tree, Fisher’s Discriminant Ratio, and Volume of
Overlap Region. A dimension reduction is done on the
best three feature types and the best coefficients are
then selected from each feature vector. Selected
coefficients are evaluated for gender classification
using three types of classifiers including GMM, SVM
and MLP neural network. 96.09% gender
identification performance was obtained as the best
performance using the selected coefficients and MLP
classifier.
|
||
حامد امینزاده, محمد هادی زاهدی, عباس بابایی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
طاهره برومندنژاد, محمد عبداللهی ازگمی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
سجاد یزدانی شهربابکی, حسین نظامآبادیپور
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
سمانه غنی, مرتضی موسوی, علی موقر رحیمآبادی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
حمید لطیفی, مجید لطیفی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
سعید نصری, علیرضا بهراد, مریم وفادار
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
امیر باوفای طوسی, سیدمحمد سادات حسینی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
محسن رضاییان, مجید غیوری, مصطفی حقجو
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
سعید سلطانعلی, نستوه طاهری جوان, آرش نصیری اقبالی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
اسماعیل نورانی, محمد عبدالهی ازگمی, امیر امیدی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
غلامحسین اکباتانیفرد, محمدحسین یغمایی مقدم, رضا منصفی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
مصطفی میلانی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
سمیرا جلالوندی, غلامرضا لطیف شبگاهی, آتنا سلیمانی
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
مجتبی جهانبخش, احمد اکبری
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|
||
فرهاد راد
|
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
|
|