انجمن کامپیوتر ایران

برای عضویت کلیک کنید

آرشیو مقالات

عنوان مقاله نویسنده(ها) مربوط به کنفرانس چکیده خرید مقاله
Fatemeh Daneshfar, Fardin Akhlaghian, Fathollah Mansoori
چهاردهمین کنفرانس بین‌المللی سالانه انجمن کامپیوتر ایران
The traffic congestion problem in urban areas is worsening since traditional traffic signal control systems cannot provide efficient traffic control. Therefore, dynamic traffic signal control in Intelligent Transportation System (ITS) recently has received increasing attention. This study devised an adaptive and cooperative multi-agent fuzzy system for a decentralized traffic signal control. To achieve this goal we have worked on a model, which has three levels of control. Every intersection is controlled by its own traffic situation, its neighboring intersections recommendations and a knowledge base, which provides the traffic pattern of each intersection in any particular day of the week and hour of the day. The proposed architecture comprises a knowledge base, prediction module and a traffic observer that provide data to real traffic data preparation module, then a decision-making layer takes decision to how long should the intersection green light be extended. The proposed architecture can achieve dynamic traffic signal control. We have also developed a NetLogobased traffic simulator to serve as the agents’ world. Our approach is tested with traffic control of a large connected junction and the result obtained is promising; The average delay time can be reduced by 21.76% compared to the conventional fixed sequence traffic signal and 14.77% compared to the vehicle actuated traffic signal control strategy.
A. R. Koushki, M. Nosrati Maralloo, C. Lucas, A. Kalhor
چهاردهمین کنفرانس بین‌المللی سالانه انجمن کامپیوتر ایران
One of the important requirements for operational planning of electrical utilities is the prediction of hourly load up to several days, known as Short Term Load Forecasting (STLF). Considering the effect of its accuracy on system security and also economical aspects, there is an on-going attention toward putting new approaches to the task. Recently, Neuro Fuzzy modeling has played a successful role in various applications over nonlinear time series prediction. This paper presents a neuro-fuzzy model for the application of short-term load forecasting. This model is identified through Locally Liner Model Tree (LoLiMoT) learning algorithm. The model is compared to a multilayer perceptron and Kohonen Classification and Intervention Analysis. The models are trained and assessed on load data extracted from EUNITE network competition.
Mohammad Zeiaee, Mohammad Reza Jahed-Motlagh
چهاردهمین کنفرانس بین‌المللی سالانه انجمن کامپیوتر ایران
Portfolio optimization under classic mean-variance framework of Markowitz must be revised as variance fails to be a good risk measure. This is especially true when the asset returns are not normal. In this paper, we utilize Value at Risk (VaR) as the risk measure and Historical Simulation (HS) is used to obtain an acceptable estimate of the VaR. Also, a well known multi-objective evolutionary approach is used to address the inherent bi-objective problem; In fact, NSGA-II is incorporated here. This method is tested on a set of past return data of 12 assets on Tehran Stock Exchange (TSE). A comparison of the obtained results, shows that the proposed method offers high quality solutions and a wide range of risk return trade-offs.
Ali Nouri, Hooman Nikmehr
چهاردهمین کنفرانس بین‌المللی سالانه انجمن کامپیوتر ایران
In a quest for modeling human brain, we are going to introduce a brain model based on a general framework for brain called Memory-Prediction Framework. The model is a hierarchical Bayesian structure that uses Reservoir Computing methods as the state-of-the-art and the most biological plausible Temporal Sequence Processing method for online and unsupervised learning. So, the model is called Hierarchical Bayesian Reservoir Memory (HBRM). HBRM uses a simple stochastic gradient descent learning algorithm to learn and organize common multi-scale spatio-temporal patterns/features of the input signals in a hierarchical structure in an unsupervised manner to provide robust and real-time prediction of future inputs. We suggest HBRM as a real-time high-dimensional stream processing model for the basic brain computations. In this paper we will describe the model and assess its prediction accuracy in a simulated real-world environment.
Mohammad Ali Keyvanrad, Mohammad Mehdi Homayounpour
چهاردهمین کنفرانس بین‌المللی سالانه انجمن کامپیوتر ایران
Gender identification based on speech signal has become gradually a matter of concern in recent years. In this context 6 feature types including MFCC, LPC, RC, LAR, pitch values and formants are compared for automatic gender identification and three best feature types are selected using four feature selection techniques. These techniques are GMM, Decision Tree, Fisher’s Discriminant Ratio, and Volume of Overlap Region. A dimension reduction is done on the best three feature types and the best coefficients are then selected from each feature vector. Selected coefficients are evaluated for gender classification using three types of classifiers including GMM, SVM and MLP neural network. 96.09% gender identification performance was obtained as the best performance using the selected coefficients and MLP classifier.
حامد امین‌زاده, محمد هادی زاهدی, عباس بابایی
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
طاهره برومندنژاد, محمد عبداللهی ازگمی
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
سجاد یزدانی شهربابکی, حسین نظام‌آبادی‌پور
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
سمانه غنی, مرتضی موسوی, علی موقر رحیم‌آبادی
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
حمید لطیفی, مجید لطیفی
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
سعید نصری, علیرضا بهراد, مریم وفادار
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
امیر باوفای طوسی, سیدمحمد سادات حسینی
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
محسن رضاییان, مجید غیوری, مصطفی حق‌جو
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
سعید سلطانعلی, نستوه طاهری جوان, آرش نصیری اقبالی
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
اسماعیل نورانی, محمد عبدالهی ازگمی, امیر امیدی
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
غلامحسین اکباتانی‌فرد, محمدحسین یغمایی مقدم, رضا منصفی
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
مصطفی میلانی
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
سمیرا جلالوندی, غلامرضا لطیف شبگاهی, آتنا سلیمانی
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
مجتبی جهانبخش, احمد اکبری
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
فرهاد راد
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
1 114 115 116 117 118 119 120 143