انجمن کامپیوتر ایران

برای عضویت کلیک کنید

آرشیو مقالات

عنوان مقاله نویسنده(ها) مربوط به کنفرانس چکیده خرید مقاله
A. H. Momeni Azandaryani, M. R. Meybodi
چهاردهمین کنفرانس بین‌المللی سالانه انجمن کامپیوتر ایران
In this paper we propose an artificial immune system in which learning automata are used to adaptively determine the values of its parameters. Learning automata are used for altering the shape of receptor portion of antibodies to better complementarily match the confronted antigen. In order to show the effectiveness of the proposed artificial immune computer experiments have been conducted. The result of experimentations confirms the effectiveness of the proposed model.
Parastoo Didari, Behrad Babai, Azadeh Shakery
چهاردهمین کنفرانس بین‌المللی سالانه انجمن کامپیوتر ایران
Text retrieval engines, such as search engines, always return a list of documents in response to a given query. Existing evaluations of text retrieval algorithms mostly use Precision and Recall of the returned list of documents as main quality measures of a search engine. In this paper, we propose a novel approach for comparing different algorithms adopted by different search engines and evaluate their performance. In our approach, the results of each algorithm is treated as an inter-related set of documents and the effectiveness of the algorithm is evaluated based on the degree of relation in the set of documents. After verifying the correctness of the evaluation measure by examining the results of the two retrieval algorithms, BM25 and pivoted normalization, and comparing these results with an ideal ranking, we compare the results of these algorithms and investigate the impact of certain major factors like stemming on the results of the suggested algorithm. The effectiveness of our proposed method is justified through obtained experimental results.
Mohamad Alishahi, Mehdi Ravakhah, Baharak Shakeriaski, Mahmud Naghibzade
چهاردهمین کنفرانس بین‌المللی سالانه انجمن کامپیوتر ایران
One of the most effective ways to extract knowledge from large information resources is applying data mining methods. Since the amount of information on the Internet is exploding, using XML documents is common as they have many advantages. Knowledge extraction from XML documents is a way to provide more utilizable results. XCLS is one of the most efficient algorithms for XML documents clustering. In this paper we represent a new algorithm for clustering XML documents. This algorithm is an improvement over XCLS algorithm which tries to obviate its problems. We implemented both algorithms and evaluated their clustering quality and running time on the same data sets. In both cases, it is shown that the performance of the new algorithm is better.
Ali Nouri, Hooman Nikmehr
چهاردهمین کنفرانس بین‌المللی سالانه انجمن کامپیوتر ایران
In a quest for modeling human brain, we are going to introduce a brain model based on a general framework for brain called Memory-Prediction Framework. The model is a hierarchical Bayesian structure that uses Reservoir Computing methods as the state-of-the-art and the most biological plausible Temporal Sequence Processing method for online and unsupervised learning. So, the model is called Hierarchical Bayesian Reservoir Memory (HBRM). HBRM uses a simple stochastic gradient descent learning algorithm to learn and organize common multi-scale spatio-temporal patterns/features of the input signals in a hierarchical structure in an unsupervised manner to provide robust and real-time prediction of future inputs. We suggest HBRM as a real-time high-dimensional stream processing model for the basic brain computations. In this paper we will describe the model and assess its prediction accuracy in a simulated real-world environment.
Behzad Omidali, S. Ali-Asghar Beheshti Shirazi
چهاردهمین کنفرانس بین‌المللی سالانه انجمن کامپیوتر ایران
In this paper a two step method based on Gauss- Newton and factor graphs algorithm is proposed for localization to enhance accuracy of localization. The Gauss-Newton algorithm is accurate method for positioning. The most important challenge of this method is senility to initial point; this problem is solved in positioning based on factor graphs. So, in this paper, first positioning equations using angle of arrival is considered based on factor graphs algorithm. Second, final location estimation is performed using Gauss Newton algorithm with error near to Cramer-Rao bound. Simulation results shows that positioning error using two step method has maximum 6% gap to Cramer-Rao Bound.
آرش عزیزی مزرعه, محمدتقی منظوری
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
زهرا رهائی
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
ابوالفضل محمودنیا
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
مریم شهابی لطف‌آبادی, امیرمسعود افتخاری‌مقدم
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
سلمان گلی بیدگلی, کمال جمشیدی
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
محمدمهدی جوانمرد, سلیمه جوادیان
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
ایمان برازنده, سیدسعیداله مرتضوی, مهدی مدادیان
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
مجید تقی‌پور علی بیگلو, سعید محمد جعفری, قنبر توسلی
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
محمد صبری, علیرضا عصاره, بیتا شادگار
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
امیر امیدی, محمد عبداللهی ازگمی, اسماعیل نورانی
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
مهدی مهدی‌خانی, محمدحسین کهایی
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
احمد یوسفان, مجتبی انعامی, محسن بیگلری
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
میلاد قانع, امیر رجب‌زاده
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
معصومه بورجندی, امیرمسعود افتخاری‌مقدم
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
جلیل مظلوم, سیدعلی سیدصالحی, مریم اسلامی‌فر
پانزدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران
1 114 115 116 117 118 119 120 143