فا   |   En
ورود به سایت
مشاهده‌ مشخصات مقاله

Evolution of Neural Network Architecture and Weights Using Mutation Based Genetic Algorithm

نویسنده (ها)
  • A. Nadi
  • S. S. Tayarani-Bathaie
  • R. Safabakhsh
مربوط به کنفرانس چهاردهمین کنفرانس بین‌المللی سالانه انجمن کامپیوتر ایران
چکیده In this paper we present a new approach for evolving an optimized neural network architecture for a three layer feedforward neural network with a mutation based genetic algorithm. In this study we will optimize the weights and the network architecture simultaneously through a new presentation for the three layer feedforward neural network. The goal of the method is to find the optimal number of neurons and their appropriate weights. This optimization problem so far has been solved by looking at the general architecture of the network but we optimize the individual neurons of the hidden layer. This change results in a search space with much higher resolution and an increased speed of convergence. Evaluation of algorithm by 3 data sets reveals that this method shows a very good performance in comparison to current methods.
قیمت
  • برای اعضای سایت : ۱٠٠,٠٠٠ ریال
  • برای دانشجویان عضو انجمن : ۲٠,٠٠٠ ریال
  • برای اعضای عادی انجمن : ۴٠,٠٠٠ ریال

خرید مقاله