فا   |   En
ورود به سایت
مشاهده‌ مشخصات مقاله

Skin Detection using Contourlet Texture Analysis

نویسنده (ها)
  • Mehran Fotouhi
  • Mohammad H. Rohban
  • Shohreh Kasaei
مربوط به کنفرانس چهاردهمین کنفرانس بین‌المللی سالانه انجمن کامپیوتر ایران
چکیده A combined texture- and color-based skin detection is proposed in this paper. Nonsubsampled contourlet transform is used to represent texture of the whole image. Local neighbor contourlet coefficients of a pixel are used as feature vectors to classify each pixel. Dimensionality reduction is addressed through principal component analysis (PCA) to remedy the curse of dimensionality in the training phase. Before texture classification, the pixel is tested to determine whether it is skin-colored. Therefore, the classifier is learned to discriminate skin and non-skin texture for skin colored regions. A multi-layer perceptron is then trained using the feature vectors in the PCA reduced space. The Markov property of images is addressed in post-processing to join separate neighbor skin detected regions. Comparison of the proposed method with other state-of-the-art methods shows a lower false positive rate with a little decrease in true positive rate.
قیمت
  • برای اعضای سایت : ۱٠٠,٠٠٠ ریال
  • برای دانشجویان عضو انجمن : ۲٠,٠٠٠ ریال
  • برای اعضای عادی انجمن : ۴٠,٠٠٠ ریال

خرید مقاله