مشاهده مشخصات مقاله
Using Supervised and Transductive Learning Techniques to Extract Network Attack Scenarios
نویسنده (ها) |
-
Narges Khakpour
-
Saeed Jalili
|
مربوط به کنفرانس |
چهاردهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران |
چکیده |
Intrusion detection can no longer satisfy security
needs of an organization solely. Recently, the attention
of security community turned to automatic intrusion
response and prevention, as the techniques, to protect
network resources as well as to reduce the attack
damages. Knowing attack scenarios enables the system
administrator to respond to the threats swiftly by either
blocking the attacks or preventing them from
escalating. Alert correlation is a technique to extract
attack scenarios by investigating the correlation of
intrusion detection systems alerts. In this paper, we
propose a new learning-based method for alert
correlation that employs supervised and transductive
learning techniques. Using this method, we are able to
extract attack scenarios automatically. |
قیمت |
-
برای اعضای سایت : ۱٠٠,٠٠٠ ریال
-
برای دانشجویان عضو انجمن : ۲٠,٠٠٠ ریال
-
برای اعضای عادی انجمن : ۴٠,٠٠٠ ریال
|
خرید مقاله
|
|