فا   |   En
Login
مشاهده‌ مشخصات مقاله

Adaptive Parameter Selection Scheme for PSO: A Learning Automata Approach

Authors
  • Ali B. Hashemi
  • M.R Meybodi
Conference چهاردهمین کنفرانس بین‌المللی سالانه انجمن کامپیوتر ایران
Abstract PSO, like many stochastic search methods, is very sensitive to efficient parameter setting. As modifying a single parameter may result in a large effect. In this paper, we propose a new a new learning automatabased approach for adaptive PSO parameter selection. In this approach three learning automata are utilized to determine values of each parameter for updating particles velocity namely inertia weight, cognitive and social components. Experimental results show that the proposed algorithms compared to other schemes such as SPSO, PSO-IW, PSO TVAC, PSO-LP, DAPSO, GPSO, and DCPSO have the same or even higher ability to find better local minima. In addition, proposed algorithms converge to stopping criteria significantly faster than most of the PSO algorithms.
قیمت
  • برای اعضای سایت : 100,000 Rial
  • برای دانشجویان عضو انجمن : 20,000 Rial
  • برای اعضای عادی انجمن : 40,000 Rial

خرید مقاله